Abstract

In 1961, P. W. Kasteleyn enumerated the domino tilings of a 2 n × 2 n chessboard. His answer was always a square or double a square (we call such a number “squarish”), but he did not provide a combinatorial explanation for this. In the present thesis, we prove by mostly combinatorial arguments that the number of matchings of a large class of graphs with 4-fold rotational symmetry is squarish; our result includes the squarishness of Kasteleyn's domino tilings as a special case and provides a combinatorial interpretation for the square root. We then extend our result to graphs with other rotational symmetries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.