Abstract

The terahertz (THz) frequency range is incredibly important as it covers electromagnetic emissions typical for biological and molecular processes. All molecules emit THz waves in a unique fingerprint pattern, although the intensity of such signals is usually too weak to be detected. To address the efficiency gap in existing THz devices it is extremely important to create surfaces with perfect anti-reflection properties. Although metals are absolutely reflective, here we show both theoretically and experimentally that by constructing meta-surfaces made of a superposition of ultra-thin metallic nano-films (a couple of nanometres thick) and oxide layers a unique property of perfect transmission and impedance matching may be realised. The perfect transmission rates can be as high as 100% and it may be achieved in both optical and THz regimes. The predicted effect has been observed for numerous meta-surfaces of different compositions. The effect found here is expected to impact the renewable energies sectors, optoelectronic and telecommunication industries, accelerating the arrival of the sensors for the new 6G-technology. The phenomenon is highly relevant to all scientific fields where minimising electromagnetic losses through reflection is important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.