Abstract

In a directed graph, a kernel is a subset of vertices that is both stable and absorbing. Not all digraphs have a kernel, but a theorem due to Boros and Gurvich guarantees the existence of a kernel in every clique-acyclic orientation of a perfect graph. However, an open question is the complexity status of the computation of a kernel in such a digraph. Our main contribution is to prove new polynomiality results for subfamilies of perfect graphs, among which are claw-free perfect graphs and chordal graphs. Our results are based on the design of kernel computation methods with respect to two graph operations: clique-cutset decomposition and augmentation of flat edges. We also prove that deciding the existence of a kernel – and computing it if it exists – can be done in polynomial time in any orientation of a chordal or a circular-arc graph, even not clique-acyclic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.