Abstract
This paper deals with the study of perfect fluid spacetimes. It is proven that a perfect fluid spacetime is Ricci recurrent if and only if the velocity vector field of perfect fluid spacetime is parallel and α = β. In addition, in a stiff matter perfect fluid Yang pure space with p + σ ≠ 0, the integral curves generated by the velocity vector field are geodesics. Moreover, it is shown that in a generalized Robertson–Walker perfect fluid spacetime, the Weyl tensor is divergence-free and the gradient of the potential function of the concircular vector field is pointwise collinear with the velocity vector field of perfect fluid spacetime. We also characterize the perfect fluid spacetimes whose Lorentzian metrics are Yamabe and gradient Yamabe solitons, respectively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.