Abstract

We examine stochastic games with finite state and action spaces. For the β-discounted case, as well as for the irreducible limiting average case, we show the existence of trembling-hand perfect equilibria and give characterizations of those equilibria. In the final section, we give an example which illustrates that the existence of stationary limiting average equilibria in a nonirreducible stochastic game does not imply the existence of a perfect limiting average equilibrium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.