Abstract
The Perey effect in two-body channels of (d, p) reactions has been known for a long time. It arises when the nonlocal two-body deuteron-target and/or proton-target problem is approximated by a local one, manifesting itself in a reduction of the scattering channel wave functions in the nuclear interior. However, the (d, p) reaction mechanism requires explicit accounting for three-body dynamics involving the target and the neutron and proton in the deuteron. Treating nonlocality of the nucleon-target interactions within a three-body context requires significant effort and demands going beyond the widely-used adiabatic approximation, which can be done using a continuum-discretized coupled-channel (CDCC) method. However, the inclusion of nonlocal interactions into the CDCC description of (d, p) reactions has not been developed yet. Here, we point out that, similarly to the two-body nonlocal case, nonlocality in a three-body channel can be accounted for by introducing the Perey factors. We explain this procedure and present the first CDCC calculations to our knowledge including the Perey effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics G: Nuclear and Particle Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.