Abstract
The Perelomov and the Barut–Girardello SU(1, 1) coherent states for harmonic oscillator in one-dimensional half space are constructed. Results show that the uncertainty products ΔxΔp for these two coherent states are bound from below [Formula: see text] that is the uncertainty for the ground state, and the mean values for position x and momentum p in classical limit go over to their classical quantities respectively. In classical limit, the uncertainty given by Perelomov coherent does not vanish, and the Barut–Girardello coherent state reveals a node structure when positioning closest to the boundary x = 0 which has not been observed in coherent states for other systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.