Abstract

Several anonymous authentication schemes allow servers to revoke a misbehaving user's ability to make future accesses. Traditionally, these schemes have relied on powerful TTPs capable of deanonymizing (or linking) users' connections. Recent schemes such as Blacklistable Anonymous Credentials (BLAC) and Enhanced Privacy ID (EPID) support privacy-enhanced -- servers can revoke misbehaving users without a TTP's involvement, and without learning the revoked users' identities.In BLAC and EPID, however, the computation required for authentication at the server is linear in the size (L) of the revocation list. We propose PEREA, a new anonymous authentication scheme for which this bottleneck computation is independent of the size of the revocation list. Instead, the time complexity of authentication is linear in the size (K

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.