Abstract

The purpose of this study was to evaluate the feasibility of percutaneously implanted tissue-engineered valved stents in the ovine pulmonary valve position. Porcine pulmonary heart valves and small intestinal submucosa were obtained from a slaughterhouse, and the intestinal submucosa used to cover the inside of the porcine pulmonary valved stents. Endothelial cells and autologous myofibroblasts were obtained from carotid artery segments of juvenile sheep. After myofibroblast seeding, constructs were placed in a dynamic bioreactor system and were cultured for 16 days. After Endothelial cell seeding, the tissue-engineered valved stents were deployed into the pulmonary valve annular site. Angiography was performed at implantation and explantation (4 weeks). Constructs were analyzed macroscopically and microscopically. Orthotopic positioning of the stents (n = 3) at the time of implantation and explantation, as well as normal valve function, was observed through angiography. Gross morphology confirmed excellent opening and closing of all leaflets. Strong expression of alpha-smooth muscle actin in neointerstitial cells and of von-Willebrand-Factor in endothelial cells was revealed by immunocytochemistry. This study demonstrates successful merging of two novel technologies: (1) percutaneous valved stent implantation and (2) tissue engineering of autologous heart valves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.