Abstract

This study evaluated the feasibility, tolerability, and efficacy of a strategy for percutaneous intra-aortic balloon pump (IABP) placement through the left axillary-subclavian artery to provide mechanical circulatory support in patients with end-stage heart failure as a bridge to heart transplantation. The transfemoral approach to IABP placement is associated with major disadvantages, including the risk for infection and limitation of patient mobility in those requiring extended support. We developed a percutaneous technique for placing IABPs in the left axillary artery that permits upright sitting and ambulation. We performed a retrospective review of data from patients who had undergone left axillary IABP implantation between 2007 and 2012. Fifty patients who received a left axillary IABP as a bridge to transplantation were identified, of whom 42 (84%) underwent heart or heart-multiorgan transplantation. Cumulative survival on IABP support was 92%, and post-transplant 90-day survival was 90%. Median duration of support was 18 days. Four of 50 patients (8%) died while on IABP support, and 3 (6%) received greater mechanical circulatory support. Four patients (8%) had clinically significant thromboembolic or bleeding events without long-term sequelae. The most common minor adverse event was IABP malposition, in 22 patients (44%). Prolonged IABP support in the heart-transplantation cohort was associated with significant improvements in mean pulmonary artery pressure and in creatinine and total bilirubin concentrations. Percutaneous insertion of an IABP through the left axillary artery is a feasible and relatively well-tolerated strategy to bridge patients with end-stage heart failure to heart transplantation. This form of mechanical-device treatment permits upright sitting and ambulation in those requiring extended support.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.