Abstract
The morbidity and mortality of surgical aortic valve replacement are increased in elderly patients with multiple high-risk comorbid conditions. Therefore, a prospective, single-center, nonrandomized study was performed in high-risk patients with aortic valve disease to evaluate the feasibility and safety of percutaneous implantation of a novel self-expanding aortic valve bioprosthesis (CoreValve). Symptomatic high-risk patients with an aortic valve area <1 cm2 were considered for enrollment. CoreValve implantation was performed under general anesthesia with extracorporeal support using the retrograde approach. Clinical follow-up and transthoracic echocardiography were performed after the procedure and at days 15 and 30 after device implantation to evaluate short-term patient and device outcomes. A total of 25 patients with symptomatic aortic valve stenosis (mean gradient before implantation, 44.2+/-10.8 mm Hg) and multiple comorbidities (median logistic EuroScore, 11.0%) were enrolled. Device success and procedural success were achieved in 22 (88%) and 21 (84%) patients, respectively. Successful device implantation resulted in a marked reduction in the aortic valve gradients (mean gradient after implantation, 12.4+/-3.0 mm Hg; P<0.0001). The mean aortic regurgitation grade was unchanged. Major in-hospital cardiovascular and cerebral events occurred in 8 patients (32%), including mortality in 5 patients (20%). Among 18 patients with device success surviving to discharge, no adverse events occurred within 30 days after leaving the hospital. Percutaneous implantation of the self-expanding CoreValve aortic valve prosthesis in high-risk patients with aortic stenosis with or without aortic regurgitation is feasible and, when successful, results in marked hemodynamic and clinical improvement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.