Abstract

This paper deals with a percussive rock surface crusher driven with a solenoid to smoothen the sample surface by a 2-axis planar motion. The weathered rock surface should be removed and smoothened before analyzing its structure and composition precisely. The solenoid, which generates a large vibration amplitude and a large impulsive force, was used to vibrate a tool bit with engineered 1-mm pyramids made of tungsten carbide. The tool bit was fixed parallel to the feed direction or with a skew. A rock sample was moved by a stage with movable ranges for the machining of 10 mm and 20 mm in the x- and y-directions, respectively. The sample paths were randomly generated in 1 or 2 directions. In the comparisons of the surface roughness, the 2-axis motion and tool skew not only allowed isotropic and small roughness but also the removal of more amount due to the removed debris. The roughness reached several tens of micrometers without a certain special frequency component. This level allows for component analysis by X-ray fluorescence or laser-induced breakdown spectrometer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.