Abstract
Electrical transport properties of random binary networks composed of high-Tc superconductor Bi2Sr2Ca2Cu3O6+x microparticles and half-metallic ferromagnet La0.67Sr0.33MnO3 (LSMO) nanoparticles have been investigated. Two resistive percolation transitions (superconductor–metal–semiconductor) have been observed for the nanocomposites with a volume fraction of the LSMO no more than 30%. The nanocomposites basic attributes (transition critical temperatures, current–voltage characteristics, percolation threshold, etc.), most probably, cannot be quantitatively interpreted within the framework of a conventional percolation model. We have explained the observed behavior by a two-level scale interaction in the system caused by (i) a significant geometric disparity between the constituent components and (ii) proximity-induced superconducting state of the half-metallic manganite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.