Abstract

The site and bond percolation problems are conventionally studied on (hyper)cubic lattices, which afford straightforward numerical treatments. The recent implementation of efficient simulation algorithms for high-dimensional systems now also facilitates the study of D_{n} root lattices in n dimensions as well as E_{8}-related lattices. Here, we consider the percolation problem on D_{n} for n=3 to 13 and on E_{8} relatives for n=6 to 9. Precise estimates for both site and bond percolation thresholds obtained from invasion percolation simulations are compared with dimensional series expansion based on lattice animal enumeration for D_{n} lattices. As expected, the bond percolation threshold rapidly approaches the Bethe lattice limit as n increases for these high-connectivity lattices. Corrections, however, exhibit clear yet unexplained trends. Interestingly, the finite-size scaling exponent for invasion percolation is found to be lattice and percolation-type specific.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.