Abstract

In this paper, we propose a new averaging model for modeling the competitive influence of $K$ candidates among $n$ voters in an election process. For such an influence propagation model, we address the question of how many seeded voters a candidate needs to place among undecided voters in order to win an election. We show that for a random network generated from the stochastic block model, there exists a percolation threshold for a candidate to win the election if the number of seeded voters placed by the candidate exceeds the threshold. By conducting extensive experiments, we show that our theoretical percolation thresholds are very close to those obtained from simulations for random networks and the errors are within $10\%$ for a real-world network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.