Abstract

Network geometry has strong effects on network dynamics. In particular, the underlying hyperbolic geometry of discrete manifolds has recently been shown to affect their critical percolation properties. Here we investigate the properties of link percolation in nonamenable two-dimensional branching simplicial and cell complexes, i.e., simplicial and cell complexes in which the boundary scales like the volume. We establish the relation between the equations determining the percolation probability in random branching cell complexes and the equation for interdependent percolation in multiplex networks with interlayer degree correlation equal to one. By using this relation we show that branching cell complexes can display more than two percolation phase transitions: the upper percolation transition, the lower percolation transition, and one or more intermediate phase transitions. At these additional transitions the percolation probability and the fractal exponent both feature a discontinuity. Furthermore, by using the renormalization group theory we show that the upper percolation transition can belong to various universality classes including the Berezinskii-Kosterlitz-Thouless (BKT) transition, the discontinuous percolation transition, and continuous transitions with anomalous singular behavior that generalize the BKT transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call