Abstract

The percolative nature of the ferroelectric phase transition in a potassium tantalate niobate (KTN) crystal is studied using time domain dielectric spectroscopy. A relaxation process linked to the off-center niobium ions is observed. The dynamic nature of this relaxation shows well defined temperature regimes in which it progresses from independent (Arrhenius) to cooperative (Vogel–Fulcher–Tammann) behavior. A recursive fractal model was applied in order to interpret the data obtained from the dielectric measurements. The structural parameters, ν and μ, derived from the correlation functions, enable the investigation of the onset of the phase transition in terms of the fractal dimensions of the polarization excitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call