Abstract

We study a system composed of two partially interdependent networks; when nodes in one network fail, they cause dependent nodes in the other network to also fail. In this paper, the percolation of partially interdependent networks under targeted attack is analyzed. We apply a general technique that maps a targeted-attack problem in interdependent networks to a random-attack problem in a transformed pair of interdependent networks. We illustrate our analytical solutions for two examples: (i) the probability for each node to fail is proportional to its degree, and (ii) each node has the same probability to fail in the initial time. We find the following: (i) For any targeted-attack problem, for the case of weak coupling, the system shows a second order phase transition, and for the strong coupling, the system shows a first order phase transition. (ii) For any coupling strength, when the high degree nodes have higher probability to fail, the system becomes more vulnerable. (iii) There exists a critical coupling strength, and when the coupling strength is greater than the critical coupling strength, the system shows a first order transition; otherwise, the system shows a second order transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call