Abstract

Glass nanocomposites, fabricated using borosilicate glass microspheres and antimony tin oxide (ATO) nanoparticles, were previously reported to have formed segregated networks at the boundaries of the glass particles. This resulted in an electrically conducting composite at low volume fractions (~0.5–0.8 vol%) of ATO nanoparticles. The wide range of electrical response in these borosilicate glass composites containing networks of varying concentration of ATO was examined using impedance spectroscopy. The electrical resistance of these composites varied over a range of around 12 orders of magnitude and exhibited several different types of insulator and conductor behavior. The formation of the ATO network was identified and tracked by scanning electron microscopy images and energy dispersive X-ray spectroscopy (EDS) scans. Detailed impedance spectroscopy analysis using all of the dielectric functions (impedance, permittivity, electric modulus, and admittance) was found to be an excellent method for detecting the development of the network and the effect that processing variables can have on its formation and the overall electrical properties of the nanocomposites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.