Abstract
Self-similarity and long-range correlations are the remarkable features of the Earth's surface topography. Here we develop an approach based on percolation theory to study the geometrical features of Earth. Our analysis is based on high-resolution, 1 arcmin, ETOPO1 global relief records. We find some evidence for abrupt transitions that occurred during the evolution of the Earth's relief network, indicative of a continental/cluster aggregation. We apply finite-size-scaling analysis based on a coarse-graining procedure to show that the observed transition is most likely discontinuous. Furthermore, we study the percolation on two-dimensional fractional Brownian motion surfaces with Hurst exponent H as a model of long-range correlated topography, which suggests that the long-range correlations may play a key role in the observed discontinuity on Earth. Our framework presented here provides a theoretical model to better understand the geometrical phase transition on Earth, and it also identifies the critical nodes that will be more exposed to global climate change in the Earth's relief network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.