Abstract
Every lattice for which the bond percolation critical probability can be found exactly possesses a critical polynomial, with the root in [0,1] providing the threshold. Recent work has demonstrated that this polynomial may be generalized through a definition that can be applied on any periodic lattice. The polynomial depends on the lattice and on its decomposition into identical finite subgraphs, but once these are specified, the polynomial is essentially unique. On lattices for which the exact percolation threshold is unknown, the polynomials provide approximations for the critical probability with the estimates appearing to converge to the exact answer with increasing subgraph size. In this paper, I show how this generalized critical polynomial can be viewed as a graph invariant, similar to the Tutte polynomial. In particular, the critical polynomial is computed on a finite graph and may be found using the recursive deletion-contraction algorithm. This allows calculation on a computer, and I present such results for the kagome lattice using subgraphs of up to 36 bonds. For one of these, I find the prediction p(c)=0.52440572..., which differs from the numerical value, p(c)=0.52440503(5), by only 6.9×10(-7).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.