Abstract

The effect of ball milling on the structural characteristics and further on the dispersion and percolation behaviour of multiwalled carbon nanotubes (MWCNTs) in melt mixed composites using a maleic anhydride modified isotactic polypropylene as matrix was investigated. TEM and SEM revealed that ball milled nanotubes were considerably shorter and showed a compact primary agglomerate morphology compared to the as-synthesised MWCNTs. At macro scale ball milled MWCNTs were found to be better dispersed, whereas at sub-micron scale the states of dispersion of both nanotube materials were comparable. The differences in the composite morphologies as well as in the composites electrical and rheological percolation behaviour were assigned to the altered MWCNT structure due to ball milling treatment. The dispersibility of ball milled MWCNTs was restricted due to their more compact agglomerate morphology. Furthermore, the ability to form percolated network structures was restrained by their shorter length and, again, their compact primary agglomerates. An effective agglomerate interaction radius depending on the nanotube structural characteristics, length and agglomerate morphology, is suggested in order to explain the experimental findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.