Abstract
Using computer simulations, we have studied the percolation and the electrical conductance of two-dimensional, random percolating networks of curved, zero-width metallic nanowires. We mimicked the curved nanowires using circular arcs. The percolation threshold decreased as the aspect ratio of the arcs increased. Comparison with published data on the percolation threshold of symmetric quadratic Bézier curves suggests that when the percolation of slightly curved wires is simulated, the particular choice of curve to mimic the shape of real-world wires is of little importance. Considering the electrical properties, we took into account both the nanowire resistance per unit length and the junction (nanowire/nanowire contact) resistance. Using mean-field approximation (MFA), we derived the total electrical conductance of nanowire-based networks as a function of their geometrical and physical parameters. The MFA predictions have been confirmed by our Monte Carlo numerical simulations. For our random homogeneous and isotropic systems of conductive curved wires, the electric conductance decreased as the wire shape changed from a stick to a ring when the wire length remained fixed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.