Abstract
A polymer network is treated as an anisotropic fractal with fractional dimensionality D = 1 + ε close to one. The percolation model on such a fractal is studied. Using the real space renormalization group approach of Migdal and Kadanoff we find the threshold value and all the critical exponents in the percolation model to be strongly nonanalytic functions of ε, e.g. the critical exponent of the conductivity was obtained to be ε—2 exp (—1 — 1/ε). The main part of the finite size conductivity distribution function at the threshold was found to be universal if expressed in terms of the fluctuating variable which is proportional to a large power of the conductivity, but with ε-dependent low-conductivity cut-off. Its reduced central momenta are of the order of e—1/ε up to very high orders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.