Abstract

Carbon nanofoam (CNF) is a low-density, high-surface-area material formed by aggregation of amorphous carbon nanoparticles into porous nanostructures. We report the use of a pulsed infrared laser to prepare CNF from a graphene oxide (GO) target material. Electron microscopy shows that the films consist of dendritic strings that form web-like three-dimensional structures. The conductivity of these structures can be modified by using the CNF as a nanostructured scaffold for gold nanoparticles deposited by sputter coating, controllably increasing the conductivity by up to 4 orders of magnitude. The ability to measure the conductivity of the porous structures allows electrochemical measurements in the environment. Upon decreasing humidity, the pristine CNF exhibits an increase in resistance with a quick response and recovery time. By contrast, the gold-sputtered CNF showed a decrease in resistance, indicating modification of the doping mechanism due to water adsorption. The sensitivity to humidity is eliminat...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.