Abstract

Biological reduction of perchlorate by autotrophic microorganisms attached to zerovalent iron (ZVI) was studied in flow-through columns. The effects of pH, flow rate, and influent perchlorate and nitrate concentrations on perchlorate reduction were investigated. Excellent perchlorate removal performance (> or = 99%) was achieved at empty bed residence times (EBRTs) ranging from 0.3 to 63 h and an influent perchlorate concentration of 40-600 microg L(-1). At the longest liquid residence times, when the influent pH was above 7.5, a significant increase of the effluent pH was observed (pH > 10.0), which led to a decrease of perchlorate removal. Experiments at short residence times revealed that the ZVI column inoculated with local soil (Colton, CA) containing a mixed culture of denitrifiers exhibited much better performance than the columns inoculated with Dechloromonas sp. HZ for reduction of both perchlorate and nitrate. As the flow rate was varied between 2 and 50 mL min(-1), corresponding to empty bed contact times of 0.15-3.8 h, a maximum perchlorate elimination capacity of 3.0 +/- 0.7 g m(-3) h(-1) was obtained in a soil-inoculated column. At an EBRT of 0.3 h and an influent perchlorate concentration of 30 microg L(-1), breakthrough (> 6 ppb) of perchlorate in the effluent did not occur until the nitrate concentration in the influent was 1500 times (molar) greater than that of perchlorate. The mass of microorganisms attached on the solid ZVI/sand was found to be 3 orders of magnitude greater than that in the pore liquid, indicating that perchlorate was primarily reduced by bacteria attached to ZVI. Overall, the process appears to be a promising alternative for perchlorate remediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.