Abstract

The magnitude of neuronal activation is commonly considered a critical factor for conscious perception of visual content. However, this dogma contrasts with the phenomenon of rapid adaptation, in which the magnitude of neuronal activation drops dramatically in a rapid manner while the visual stimulus and the conscious experience it elicits remain stable. Here, we report that the profiles of multi-site activation patterns and their relational geometry-i.e., the similarity distances between activation patterns, as revealed using intracranial electroencephalographic (iEEG) recordings-are sustained during extended visual stimulation despite the major magnitude decrease. These results are compatible with the hypothesis that conscious perceptual content is associated with the neuronal pattern profiles and their similarity distances, rather than the overall activation magnitude, in human visual cortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call