Abstract
Multichannel auralizations based on spatial room impulse responses often employ sample-wise assignment of an omnidirectional response to form loudspeaker responses. This leads to sparse impulse responses in each reproduction loudspeaker and the auralization of transient signals can sound rough. Based on this observation, we conducted a listening test to examine the general phenomenon of roughness due to spatial assignment. First, participants assessed the roughness of both Gaussian noise and velvet noise, assigned sample-wise to up to 36 loudspeakers by two algorithms. The first algorithm assigns channels merely by selecting random indices, while the second one constrains the time between two peaks on each channel. The results show that roughness already occurs when few channels are used and that the assignment algorithm influences it. In a second experiment, virtualizations of the test were used to examine the factors contributing to increased roughness. We systematically show the effect of spatial assignment on noise and conclude that besides time-differences, level-differences caused by head-shadowing are the principal cause for the perceived roughness. The results have significance in spatial room impulse response rendering and spatial reverberator design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.