Abstract
This paper introduces a perceptual model for determining 3D printing orientations. Additive manufacturing methods involving low-cost 3D printers often require robust branching support structures to prevent material collapse at overhangs. Although the designed shape can successfully be made by adding supports, residual material remains at the contact points after the supports have been removed, resulting in unsightly surface artifacts. Moreover, fine surface details on the fabricated model can easily be damaged while removing supports. To prevent the visual impact of these artifacts, we present a method to find printing directions that avoid placing supports in perceptually significant regions. Our model for preference in 3D printing direction is formulated as a combination of metrics including area of support, visual saliency, preferred viewpoint and smoothness preservation. We develop a training-and-learning methodology to obtain a closed-form solution for our perceptual model and perform a large-scale study. We demonstrate the performance of this perceptual model on both natural and man-made objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.