Abstract

A common approach to high dynamic range (HDR) imaging is to capture multiple images of different exposures followed by multi-exposure image fusion (MEF) in either radiance or intensity domain. A predominant problem of this approach is the introduction of the ghosting artifacts in dynamic scenes with camera and object motion. While many MEF methods (often referred to as deghosting algorithms) have been proposed for reduced ghosting artifacts and improved visual quality, little work has been dedicated to perceptual evaluation of their deghosting results. Here we first construct a database that contains 20 multiexposure sequences of dynamic scenes and their corresponding fused images by nine MEF algorithms. We then carry out a subjective experiment to evaluate fused image quality, and find that none of existing objective quality models for MEF provides accurate quality predictions. Motivated by this, we develop an objective quality model for MEF of dynamic scenes. Specifically, we divide the test image into static and dynamic regions, measure structural similarity between the image and the corresponding sequence in the two regions separately, and combine quality measurements of the two regions into an overall quality score. Experimental results show that the proposed method significantly outperforms the state-of-the-art. In addition, we demonstrate the promise of the proposed model in parameter tuning of MEF methods.1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.