Abstract

When interacting with groups of robots, we tend to perceive them as a homogenous group where all group members have similar capabilities. This overgeneralization of capabilities is potentially due to a lack of perceptual experience with robots or a lack of motivation to see them as individuals (i.e., individuation). This can undermine trust and performance in human–robot teams. One way to overcome this issue is by designing robots that can be individuated such that each team member can be provided tasks based on its actual skills. In two experiments, we examine if humans can effectively individuate robots: Experiment 1 (n = 225) investigates how individuation performance of robot stimuli compares to that of human stimuli that either belong to a social ingroup or outgroup. Experiment 2 (n = 177) examines to what extent robots’ physical human-likeness (high versus low) affects individuation performance. Results show that although humans are able to individuate robots, they seem to individuate them to a lesser extent than both ingroup and outgroup human stimuli (Experiment 1). Furthermore, robots that are physically more humanlike are initially individuated better compared to robots that are physically less humanlike; this effect, however, diminishes over the course of the experiment, suggesting that the individuation of robots can be learned quite quickly (Experiment 2). Whether differences in individuation performance with robot versus human stimuli is primarily due to a reduced perceptual experience with robot stimuli or due to motivational aspects (i.e., robots as potential social outgroup) should be examined in future studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call