Abstract

Selective adaptations was used to determine the degree of interactions between channels processing relative depth from stereopsis, motion parallax, and texture. Monocular adaptations with motion parallax or binocular stationary adaptation caused test surfaces, viewed either stationary binocularly or monocularly with motion parallax, to appear to slant in the opposite direction compared with the slant initially adapted to. Monocular adaptations on frontoparallel surfaces covered with a pattern of texture gradients caused a subsequently viewed test surface, viewed either monocularly with motion parallax or stationary binocularly, to appear to slant in the opposite direction as the slant indicated by the texture in the adaptation condition. No aftereffect emerged in the monocular stationary test condition. A mechanism of independent channels for relative depth perception is dismissed in favor of a view of an asymmetrical interactive processing of different information sources. The results suggest asymmetrical inhibitory interactions among habituating slant detector units receiving inputs from static disparity, dynamic disparity, and texture gradients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.