Abstract

The perception of the acoustic world surrounding us very often is different from its physical properties. Our mental representation of the sounds that we are exposed to are not in a one to one correspondence with the sounds we sense. Auditory objects and their environments are categorized and loaded in memory so that recognition of complex dynamic scenes are perceived optimally. Precise identification of voices and linguistic objects are crucial for effective communication. However, the normal context of hearing contains multiple, competing and noisy sources. In such disadvantageous conditions the identity of the percepts is more efficient if they are stored in memory. The results of the present study offer experimental evidence that high-level cognitive processes might constrain basic auditory mechanisms involved in identifying phonemic tone to guarantee perceptual constancy. The results showing a better identification of tones in contexts that are inveresely proportional to their frequency support the idea that peripheral auditory processing enhances the identification of the tones by a general function of contextual contrast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call