Abstract

This paper proposes a versatile perceptual audio coding method that achieves high compression ratios and is capable of low encoding/decoding delay. It accommodates a variety of source signals (including both music and speech) with different sampling rates. It is based on separating irrelevance and redundancy reductions into independent functional units. This contrasts traditional audio coding where both are integrated within the same subband decomposition. The separation allows for the independent optimization of the irrelevance and redundancy reduction units. For both reductions, we rely on adaptive filtering and predictive coding as much as possible to minimize the delay. A psycho-acoustically controlled adaptive linear filter is used for the irrelevance reduction, and the redundancy reduction is carried out by a predictive lossless coding scheme, which is termed weighted cascaded least mean squared (WCLMS) method. Experiments are carried out on a database of moderate size which contains mono-signals of different sampling rates and varying nature (music, speech, or mixed). They show that the proposed WCLMS lossless coder outperforms other competing lossless coders in terms of compression ratios and delay, as applied to the pre-filtered signal. Moreover, a subjective listening test of the combined pre-filter/lossless coder and a state-of-the-art perceptual audio coder (PAC) shows that the new method achieves a comparable compression ratio and audio quality with a lower delay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.