Abstract

The amplitude spectra of natural scenes are typically biased in terms of the amount of content at the cardinal orientations relative to the oblique orientations. This anisotropic distribution has been related to the 'oblique effect' (the greater visual sensitivity for simple line/grating stimuli at cardinal compared to oblique orientations). However, we have recently shown that with complex visual stimuli possessing broadband spatial content (i.e. random phase noise patterns), sensitivity for detecting oriented manipulations of amplitude is best for oblique orientations, and worst for horizontal orientations (the 'horizontal effect'). Here we investigated this effect with respect to the phase spectra of natural scenes. Oriented manipulations of both amplitude and phase were made on a set of natural scene images that were dominated by naturally occurring structure at one of four orientations in order to determine whether the presence of predominant scene content, carried by the Fourier phase spectra, altered the ability to detect an oriented increment of amplitude. The horizontal effect was observed regardless of any scene's content bias. In addition, a content-dependent effect was observed which could be related to the presence of spatial structure conveyed by the phase spectra of this set of natural scenes. Results are evaluated in the context of a divisive normalization model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call