Abstract
Support vector machine (SVM) learning has been recently proposed for image compression in the frequency domain using a constant epsilon-insensitivity zone by Robinson and Kecman. However, according to the statistical properties of natural images and the properties of human perception, a constant insensitivity makes sense in the spatial domain but it is certainly not a good option in a frequency domain. In fact, in their approach, they made a fixed low-pass assumption as the number of discrete cosine transform (DCT) coefficients to be used in the training was limited. This paper extends the work of Robinson and Kecman by proposing the use of adaptive insensitivity SVMs [2] for image coding using an appropriate distortion criterion [3], [4] based on a simple visual cortex model. Training the SVM by using an accurate perception model avoids any a priori assumption and improves the rate-distortion performance of the original approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.