Abstract

The perception of susceptible individuals naturally lowers the transmission probability of an infectious disease but has been often ignored. In this paper, we formulate and analyze a diffusive SIS epidemic model with memory-based perceptive movement, where the perceptive movement describes a strategy for susceptible individuals to escape from infections. We prove the global existence and boundedness of a classical solution in an n-dimensional bounded smooth domain. We show the threshold-type dynamics in terms of the basic reproduction number [Formula: see text]: when [Formula: see text], the unique disease-free equilibrium is globally asymptotically stable; when [Formula: see text], there is a unique constant endemic equilibrium, and the model is uniformly persistent. Numerical analysis exhibits that when [Formula: see text], solutions converge to the endemic equilibrium for slow memory-based movement and they converge to a stable periodic solution when memory-based movement is fast. Our results imply that the memory-based movement cannot determine the extinction or persistence of infectious disease, but it can change the persistence manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call