Abstract
BackgroundProsthetic foot stiffness, which is typically invariable for commercially available prosthetic feet, needs to be considered when prescribing a prosthetic foot. While a biological foot adapts its function according to the movement task, an individual with lower limb amputation may be limited during more functionally demanding gait tasks by their conventional energy storing and return prosthetic foot. Research questionHow do changes in prosthetic foot stiffness during incline walking affect biomechanical measures as well as perception of participants. MethodsKinetic and kinematic data were collected during incline walking, for five participants with trans-tibial amputation. A mixed model analysis of variance was used to analyse the effects of changing the stiffness during incline walking, using a novel variable-stiffness unit built on a commercially available prosthetic foot. Biomechanical results were also analysed on an individual level alongside the participant feedback, for a better understanding of the various strategies and perceptions exhibited during incline walking. ResultsStatistically significant effects were only observed on the biomechanical parameters directly related to prosthetic ankle kinematics and kinetics (i.e., peak prosthetic ankle dorsiflexion, peak prosthetic ankle power, dynamic joint stiffness during controlled dorsiflexion). Participant perception during walking was affected by changes in stiffness. Individual analyses revealed varied perceptions and varied biomechanical responses among participants. SignificanceWhile changes in prosthesis mechanical properties influenced the amputee’s experience, minimal immediate effects were found with the overall gait pattern. The reported inter-participant variability may be due to the person’s physical characteristics or habitual gait pattern, which may influence prosthesis function. The ability to vary prosthetic foot stiffness during the assessment phase of setting up a prosthesis could provide useful information to guide selection of the appropriate prosthetic device for acceptable performance across a range of activities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.