Abstract

Objectives Wheelchair transfers risk injury to users and caregivers. Conventional transfer devices are injury-prone and time inefficient. The Powered Personal Transfer System (PPTS), utilizing a modified Electric Powered Wheelchair (EPW) and a hospital bed, provides a no-lift solution for bed-to-wheelchair transfers. Objective 1: Assess PPTS workload compared to existing methods. Objective 2: Evaluate PPTS EPW in daily mobility tasks. Objective 3: Perform Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) wheelchair standards testing for PPTS EPW stability and performance. Methods Fifteen professional and family caregivers, experienced in assisting EPW users, performed transfers between the bed and EPW using the PPTS. Subsequently, participants drove the PPTS EPW providing ratings on the ease of performing mobility tasks. Wheelchair testing was conducted following RESNA standards. Setting : Simulated bedroom in a laboratory setting. Results Participants reported low workload demands for employing the PPTS and indicated a preference for the PPTS over existing transfer devices/methods. Ease of performing everyday mobility tasks was not significantly different between the modified PPTS and the commercially available original manufacturer equipment EPW (p > 0.05). RESNA wheelchair standards testing confirmed that the PPTS EPW preserves functionality, stability and performance when compared to similar commercially available EPWs. Conclusion The PPTS demonstrated promise in offering a practical, low demanding, and safe solution for transfers. It has the potential to enhance user and caregiver safety by reducing the incidence of caregiver injuries associated with assisting in transfer tasks. In addition to its efficiency and ease of use, it is an advancement in assistive technology for wheelchair transfers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.