Abstract
Bias in web search has been in the spotlight of bias detection research for quite a while. At the same time, little attention has been paid to query suggestions in this regard. Awareness of the problem of biased query suggestions has been raised. Likewise, there is a rising need for automatic bias detection approaches. This paper adds on the bias detection pipeline for bias detection in query suggestions of person-related search developed by Bonart et al. [2]. The sparseness and lack of contextual metadata of query suggestions make them a difficult subject for bias detection. Furthermore, query suggestions are perceived very briefly and subliminally. To overcome these issues, perception-aware metrics are introduced. Consequently, the enhanced pipeline is able to better detect systematic topical bias in search engine query suggestions for person-related searches. The results of an analysis performed with the developed pipeline confirm this assumption. Due to the perception-aware bias detection metrics, findings produced by the pipeline can be assumed to reflect bias that users would discern.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.