Abstract

In five experiments, we investigated the detection of symmetry (i.e., translation plus reflection) or repetition (i.e., translation alone) between two vertical jagged contours. The complexity of the two contours was manipulated, as was their figure-ground assignment; the two contours either belonged to a common object "inside" them, to two separate objects "outside" them, or to two separate objects each to the right of one contour. Replicating Baylis and Driver (1994), symmetry judgements were unaffected by contour complexity when made within a single shape, implying a parallel process operating efficiently across contour discontinuities. However, all the other conditions yielded substantially slower judgements as complexity increased, suggesting either effortful point-by-point comparisons, or a highly inefficient parallel process. In agreement with Baylis and Driver (1995a), symmetry perception was harder when figure-ground assignment turned convexities along one contour into concavities along the other contour; and likewise for repetition detection. However, even when convex parts matched between the two contours, judgements were still affected by complexity unless they belonged to a common object. This supports Baylis and Driver's (1993) proposal that effortless comparisons for the layout of multiple convex parts can only be made within single perceptual objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.