Abstract

Echinoid feeding biology is well known but their sluggish responses to chemical stimuli have turned them into inadequately worked in the field of chemoreception. Echinoid responses to chemical stimulation had allowed, so far, only qualitative analyses based on tube-feet activity, directional, or masticatory movements, and artificial agarose foods. Besides stimulation through plumes of dissolved organic compounds and response analysis based on tube-feet activity, we propose another method to chemically stimulate echinoids that allows for fast and unambiguous responses and thus, quantitative analyses. Small squared pieces of absorbent semi-synthetic cleaning cloths, soaked with specific chemical compounds (simulacra), such as water insoluble lipid oils, were deposited singly or concurrently with a blank on the aboral hemisphere of each sea urchin, allowing choice and eventual transport down to the mouth by tube feet and spines of one or both cloths. The responsiveness ofParacentrotus lividuswas clearly dependent on its nutritional state. Well-fed sea urchins (maize whole grains) rarely responded, while the ones fed with less caloric rations (Kombu seaweed) responded faster and objectively. Stimulating sea urchinP. lividuswith 41 different food-related compounds, such as carbohydrates, proteins, peptides and amino acids, oils and fatty acids, and purified chemicals related with some human basic tastes, it was possible to evidence a clear ability of this echinoid species to positively discriminate proteins, starches, and a very few oils. Perceived as incitants/stimulants we have only found among proteins gliadin (from wheat gluten) but not casein (from bovine milk), among polysaccharides starch but not laminarin (from kelp) or glycogen (from mussels), and among lipids only the fatty acid linolenic acid. Among tissues, Kombu alga flesh and mussel flesh were readily perceived as both incitant/stimulant but not Kombu and mussel extracts. Therefore, the combined results reported here provide evidence forP. lividusas an omnivorous species rather than a strictly herbivorous marine species. However, the restricted group of food-related compounds perceived by this species as incitants or suppressants and as stimulants or deterrents was shown to be remarkably related to other vertebrates whose kinship was confirmed by the sequencing of the genome of another plant-eater sea urchin.

Highlights

  • Sea urchin feeding ecology and preferences have been studied for many years, but their olfactory ability and relation to feeding behaviour still remain lesser-known subjects

  • Food Proximity Whenever the sea urchins were placed in the centre of the aquarium, regardless of the type of illumination, they immediately initiated displacement with an apparently erratic course with several changes in direction that generally came to a halt when any of the corners of the aquarium was reached and they stayed put for days without any further motion

  • The results showed that this method is not convenient to chemically stimulate sea urchin P. lividus

Read more

Summary

Introduction

Sea urchin feeding ecology and preferences have been studied for many years, but their olfactory ability and relation to feeding behaviour still remain lesser-known subjects. Few analytical studies have been conducted on echinoids using extracts and food-related chemicals such as amino acids, but very little has been done on the precise characterisation of the chemicals stimulatory to echinoids (Sloan and Campbell, 1982). Compounds with low molecular weight, notably amino acids and amines, make up the primary feeding stimulants (Whittle and Blumer, 1970; Mann et al, 1984; McClintock et al, 1984). The precise characterisation of chemicals stimulatory to echinoids is still a wide-open field in which knowledge of chemical stimulants derived from algal food would be useful (Sloan and Campbell, 1982)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.