Abstract

Impulsive-source active sonar systems are often plagued by false alarm echoes resulting from the presence of naturally occurring clutter objects in the environment. Sonar performance could be improved by a technique for discriminating between echoes from true targets and echoes from clutter. Motivated by anecdotal evidence that target echoes sound very different than clutter echoes when auditioned by a human operator, this paper describes the implementation of an automatic classifier for impulsive-source active sonar echoes that is based on perceptual signal features that have been previously identified in the musical acoustics literature as underlying timbre. Perceptual signal features found in this paper to be particularly useful to the problem of active sonar classification include: the centroid and peak value of the perceptual loudness function, as well as several features based on subband attack and decay times. This paper uses subsets of these perceptual signal features to train and test an automatic classifier capable of discriminating between target and clutter echoes with an equal error rate of roughly 10%; the area under the receiver operating characteristic curve corresponding to this classifier is found to be 0.975.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.