Abstract

IntroductionNatural killer T (NKT) cells are involved in the antitumor response by direct cytotoxicity and indirectly through activation of effector cells. Recent studies have shown a relationship between the number and function of NKT cells and clinical outcomes. NKT cells seem to represent a promising tool for immunotherapy of cancer.The aim of the studyThe aim of the study was to evaluate the distribution of NKT cells in peripheral blood, lymph nodes and tumor tissue of non-small cell lung cancer (NSCLC) patients, as well as development of the most efficient set of cytokines stimulating differentiation of NKT cells.Material and methodsWe evaluated the percentage of iNKT+CD3+ cells in the tissues collected from patients with NSCLC. For the generation of NKT cells, we cultured cells isolated from the blood of 20 healthy donors and from the tissues of 4 NSCLC patients. Cells were stimulated with α-GalCer in combinations with cytokines.ResultsWe noted significant differences in the percentages of NKT cells in the patients’ tissues. The highest percentage of these cells was observed in the tumor tissue and the lowest in the lymph nodes. In vitro, in healthy donors all α-GalCer-cytokine combinations were effective in stimulation of NKT cells’ proliferation. NKT cells’ proliferation was the most efficiently stimulated by α-GalCer+IL-2+IL-7 and α-GalCer+IL-2+IFN-γ.ConclusionsOur results suggest that in the course of NSCLC, NKT cells migrate to the primary tumor and accumulate therein. All tested combinations of α-GalCer and cytokines were capable of generation of NKT cells in vitro.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call