Abstract

Natural surfaces such as soil, grass, and skin usually involve far more complex and heterogenous structures than the perfectly uniform surfaces assumed in studies on color and material perception. Despite this, we can easily perceive the representative color of these surfaces. Here, we investigated the visual mechanisms underlying the perception of representative surface color using 120 natural images of diverse materials and their statistically synthesized images. Our matching experiments indicated that the perceived representative color revealed was not significantly different from the Portilla–Simoncelli-synthesized images or phase-randomized images except for one sample, even though the perceived shape and material properties were greatly impaired in the synthetic stimuli. The results also showed that the matched representative colors were predictable from the saturation-enhanced color of the brightest point in the image, excluding the high-intensity outliers. The results support the notion that humans judge the representative color and lightness of real-world surfaces depending on simple image measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call