Abstract
We examined how people perceive their path of traveling from optic flow. Observers viewed displays simulating their traveling on a circular path over a textured ground, a random-dot ground, or a dynamic random-dot ground display in which dots were periodically redrawn to remove extended dot motion trajectories (flow lines) in the flow field. Five viewing conditions were tested in which the simulated observer gaze direction was pointed to (1) a target on the path at 30° away from the initial heading, (2) a target at 15° outside of the path, (3) a target at 15° inside of the path, (4) along the instantaneous heading, or (5) along the Z-axis of the simulated environment. Path performance was similar for all three display conditions, indicating that observers did not rely on flow lines to perceive path from optic flow. Furthermore, contrary to the idea that looking where you want to go provides accurate path perception, path perception was accurate only when the simulated observer gaze direction pointed in the instantaneous heading direction. In contrast, heading perception was accurate and not affected by path curvature regardless of the simulated gaze direction. The results suggest that heading perception is more robust than path perception.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.