Abstract

The auditory system relies on binaural differences and spectral pinna cues to localize sounds in azimuth and elevation. However, the acoustic input can be unreliable, due to uncertainty about the environment, and neural noise. A possible strategy to reduce sound-location uncertainty is to integrate the sensory observations with sensorimotor information from previous experience, to infer where sounds are more likely to occur. We investigated whether and how human sound localization performance is affected by the spatial distribution of target sounds, and changes thereof. We tested three different open-loop paradigms, in which we varied the spatial range of sounds in different ways. For the narrowest ranges, target-response gains were highly idiosyncratic and deviated from an optimal gain predicted by error-minimization; in the horizontal plane the deviation typically consisted of a response overshoot. Moreover, participants adjusted their behavior by rapidly adapting their gain to the target range, both in elevation and in azimuth, yielding behavior closer to optimal for larger target ranges. Notably, gain changes occurred without any exogenous feedback about performance. We discuss how the findings can be explained by a sub-optimal model in which the motor-control system reduces its response error across trials to within an acceptable range, rather than strictly minimizing the error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.