Abstract
Video games affect the stress system and cognitive abilities in different ways. Here, we evaluated electrophysiological and biochemical indicators of stress and assessed their effects on cognition and behavioral indexes after playing a scary video game. Thirty volunteers were recruited into two groups as control and experimental. The saliva and blood samples were collected before and after intervention (watching/playing the scary game for control and experimental groups respectively). To measure cortisol and salivary alpha-amylase (sAA) levels, oxytocin (OT), and brain-derived neurotrophic factor (BDNF) plasma levels, dedicated ELISA kits were used. Electroencephalography recording was done before and after interventions for electroencephalogram (EEG)-based emotion and stress recognition. Then, the feature extraction (for mental stress, arousal, and valence) was done. Matrix laboratory (MATLAB) software, version 7.0.1 was used for processing EEG-acquired data. The repeated measures were applied to determine the intragroup significance level of difference. Scary gameplay increases mental stress (P<0.001) and arousal (P<0.001) features and decreases the valence (P<0.001) one. The salivary cortisol and alpha-amylase levels were significantly higher after the gameplay (P<0.001 for both). OT and BDNF plasma levels decreased after playing the scary game (P<0.05 for both). We conclude that perceived stress considerably elevates among players of scary video games, which adversely affects the emotional and cognitive capabilities, possibly via the strength of synaptic connections, and dendritic thorn construction of the brain neurons among players. The mental stress level increases in players of scary video games.The salivary cortisol and alpha-amylase levels are significantly higher after the scary gameplay.Plasma levels of oxytocin and brain-derived neurotrophic factor decrease after the scary gameplay.The arousal and valence features increase in players of scary video game.Cognitive capabilities are adversely affected by the scary gameplay. Nowadays, video games have become an important part of human life at different ages. Therefore, assessing their effects (improving and/or damaging) on cognition and behavior is important for understanding how they affect the nervous system. The results of such studies can be used to design a variety of games in the future in a way that minimizes the harmful side effects of video games on human cognitive functions and maximizes their beneficial effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.