Abstract
Previous research has indicated that observers use differences between velocities and ratios of velocities to judge the depth within a moving object, although depth cannot in general be determined from these quantities. In four experiments we examined the relative effects of velocity difference and velocity ratio on judged depth within a transparent object that was rotating about a vertical axis and translating horizontally, examined the effects of the velocity difference for pure rotations and pure translations, and examined the effect of the velocity difference for objects that varied in simulated internal depth. Both the velocity difference and the velocity ratio affected judged depth, with difference having the larger effect. The effect of velocity difference was greater for pure rotations than for pure translations. Simulated depth did not affect judged depth unless there was a corresponding change in the projected width of the object. Observers appear to use the velocity difference, the velocity ratio, and the projected width of the object heuristically to judge internal object depth, rather than using image information from which relative depth could potentially be recovered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.