Abstract

Sewage sludge management poses a pressing environmental challenge, demanding the implementation of sustainable solutions to facilitate resource recovery. Short-chain fatty acids (SCFAs) serve as valuable chemicals and renewable energy sources, underscoring the importance of maximizing their production to achieve sustainable waste management. Therefore, this study proposes a novel and green strategy, i.e., percarbonate-strengthened ferrate pretreatment to enhance SCFAs synthesis from sewage sludge, because percarbonate could activate ferrate oxidation through providing (bi) carbonate and hydrogen peroxide. Results show that percarbonate largely reduces the required ferrate dosage for fermentation improvement, and their combination exhibits obvious synergistic effects on SCFAs accumulation and sludge reduction. Under the optimal pretreatment conditions, SCFAs production is promoted to 3670.2 mg COD/L, representing a remarkable increase of 5512.4 %, 156.0 % or 395.1 % compared to the control, percarbonate alone or ferrate alone, respectively. Mechanism explorations demonstrate that percarbonate-strengthened ferrate pretreatment significantly enhances sludge solubilization, elevates substrate biodegradability, and alters the physiochemical properties of sludge to favor organics fermentation. The synergistic effects on solid organics release and sludge properties can be attributed to the combined mechanisms of enhanced oxidation and alkaline hydrolysis. Further investigations on metabolic pathways reveal that the combination substantially improves key enzyme activities associated with hydrolysis and SCFAs formation, while severely inhibits that of SCFAs consumption. These findings are further supported by the functional genes coding relevant enzymes. Moreover, the combination alters microbial structures and compositions, leading to the screening and enrichment of key microbes that facilitate SCFAs accumulation. This innovative strategy holds significant promise in advancing sewage sludge management towards a more circular and resource-efficient paradigm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call